Задачи по тфкп для самостоятельного решения
Задача 1. Вычертить область.
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. |
17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. |
Задача 2. Найти все значения корня.
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. |
11. 12. 13. 14. 15. 16. 17. 18. 19. 20. |
21. 22. 23. 24. 25. 26. 27. 28. 29. 30. |
Задача 3. Вычислить значение функции в точке .
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. |
16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. |
Задача 4. Восстановить аналитическую функцию .
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. |
16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. |
Задача 5. Вычислить интеграл от функции комплексного переменного.
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. |
16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. |
Задача 6. Найти все Лорановские разложения по степеням .
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. |
16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. |
Задача 7. Разложить в ряд Лорана в окрестности точки .
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. |
16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. |
Задача 8. Вычислить интеграл с помощью интегральной формулы Коши.
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. |
16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. |
Задача 9. Вычислить интеграл с помощью вычетов.
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. |
16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. |
Задача 10. Вычислить интеграл.
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. |
16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. |
Задача 11. Вычислить интеграл.
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. |
16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. |
Задача 12. Найти оригинал.
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. |
16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. |
Задача 13. Операционным методом решить дифференциальное уравнение.
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. |
16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. |
Задача 14. Операционным методом решить систему дифференциальных уравнений.
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. |
16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. |
Список рекомендуемой литературы
1. Данко, П. Е., Попов, А. Т., Кожевникова, Т. Я./ П. Е. Данко, А. Т. Попов, Т. Я. Кожевникова. Высшая математика в упражнениях и задачах, Ч.2. – М. Высшая школа.
2. Чудесенко В. Ф./ В. Ф. Чудесенко. Сборник заданий по специальным курсам высшей математики (типовые расчеты): учебное пособие для ВТУЗов, – М. Высшая школа.
3. Краснов М. Л., Киселев А. И., Макаренко Г. И./ М. Л. Краснов, А. И. Киселев, Г. И. Макаренко. Функции комплексного переменного. Операционное исчисление. Теория устойчивости: учебное пособие. – М. Наука.