Решение задач по дифурам
1)
tgx=
2)x׳ctgt+x=2
X׳ctgt=2-x
ctgt=2-x
ctgtdx=(2-x)dt
ctgtdx=(2-x)dt/:ctgt*(2-x)
=
=+C
=+C
= +C
=+
+=
=
=C(2-x)
3)tdt+xdx+(tdx-xdt)
tdt+xdx+dx-
rcos
dp+
2p
4)(t+2x+1)dt-(2t-3)dx=0
t= x=- —
x=—t=+
(++2—+1)d=(
(+2) = 2z==z‘=z’+z
(z+2)(z’+z)=2z
z’(z+2)+=0
(z+2)dz+=0
dz+=0|:
+)dz+=C
++=C
—+=
—=
z=C =
=
t — = C
C=
5) Теңдеуді шеш: tx-x′=xlnx′
x′=p
tx-p=xlnp
t=
pd()=dx
|:x(z-1)
6)Теңдеуді шеш:
,
8)
-1=Ce
Ce=-1
C=-
9)
12) (y+2)dx-(2x+3y-5)dy=0
y=-2
2x-6-5=0
2x-11=0
2x=11
x=
x=+ = x-
y=-2 = y+2
(-2+2)d-(2+11+3-6-5)d=0
d-(2+3)d=0
-(2+3)=0
=z
d=(2+3)d
z = (2+3z)()
z =2+2 z +3+3= z +3+(2+3z)=z+3+(2+3z)
(z+3) d+ (2+3z)dz=0
(z+3) d+(2+3z)dz=0 :(z+3)
+=C
+=C
+2—=
+2—=
13)(2x+1)=4x+2y
(2x+1)=4x+2y
(2x+1)dy-2ydx=0
(2x+1)dy-2ydx=0 :(2x+1)y
— =0
– =
— =
y=(2x+1)
y=C(x)(2x+1)
=(2x+1)+2C(x)
+2(2x+1)C(x)- 2(2x+1)C(x)=4x
=
C(x)==4= + +
y=( + )(2x+1)+=1+(2x+1) + (2x+1)
14) (xy+)dx-xdy=0
xy+-x=0
xy’=xy+
xy’-xy=
xy’-xy=0
xdy-xydx=0 |xy
— =C
— x =
y=C1
y=C1 (x)
y’=C’(x)+C(x)
xC’(x)+xC(x) — xC(x)=
C’(x)=
C(x)= +C2
C(x)=+C2
y=(+C2)= +C2
15) 2x(x2+y)dx=dy
(2×3+2xy)dx=dy
y’=2×3+2xy
y’-2xy=2×3
y’-2xy=0
dy-2xydx |y, y0
– 2xdx=0
— =C1
— x2 =
y=C1
y’=C1(x)2x+y’(x)
C’(x)+2xC(x)— 2xC(x)=2×3
C1’(x)= dx
C1(x) = — +C2
y=( — +C2)— x2 – 1+
17) ()dx+(+)dy=0
M N
==
= =+
F=
=
+ =
== +C
+ = C
4+= 4C
18)
19)
20) y=xy`-x2 y`3
y`=p
y=xp-x2p3
dy=pdx
d(xp-x2p3)=pdx
xdp+pdx-2xp3dx-3p2x2dp=pdx
(x-3p2x2)dp=2xp3dx
x(1-3p2x)dp=2xp3dx
(1-3p2x)dp=2p3dx
,
x=c(x)*p-3/2
x`=c`(x)p-3/2-3/2p-5/2c(x)
c`(x)p-3/2-3/2c(x)p-5/2+3/2c(x)p-5/2=1/2p3
c`(x)=1/2p3*p3/2
c`(x)=dx/2p3/2
y=xp-x2p3
x=-1/p2+c2
Ж: xp2=c2-1
21) y=xy`+y`2
y=cx+c2
0=x+2c, c=-x/2
y=cx+c2
4y=-x2 , y=-x2/4
22) y=x Лагранж теңдеуі
y=
dy=pdx
d(x)=pdx
(
p(p-1)dx+p(2x-6p)dp=0
(p-1)dx+(2x-6p)dp=0
(p-1)
(p-1)
(p-1)x’+2x=0
(p-1)dx+2xdp=0
ln|x|+2ln|p-1|=ln|C|
x=
x’=C’(p)
C’(p)=
C(p)=
X=
23) y’’-2y’-3y=
-3=0
D=4+4*3=16
r=0
y’=4
y’’=16
16 -3
16A-8A-3A=1
5A=1
A=
y=
24)
a+ib=1+i*0=1, r=1
++Cx+2Bx+C+;
2B+2Bx+C+2Bx+C+2Bx+C=3x
6B=3 B=
y=
25)y
a+bi=1+0=1, r=0
A
2Ax=4x
A=0
B=-A
B=-2
y=
26)
X=
-3y=0
D=4+4*3=16
Y=
X(t=lnx)
Y=
27)
X=
D=25-4*6=1
Y=
28) 2xy’y»=y’2-1
y’=z, y»=z’
2xzz’=z2-1
Dy=
z=
y=
29)yy´´+1=y´2
y´=p, y´´=pp´
y pp´+1=
yp
ypdp=( :
a)C<0
=x+
Cy=
b)C=0
y=x
в)C>0
Cy=
10) (-2xy+y2)dx+ x2dy=0.
(y2-2xy)dx+ x2dy=0
y=zx, dy=zdx+xdz
(z2x2-2zx2)dx+x2(zdx+xdz)=0
z2x2dx-2zx2dx+x2zdx+x3dz=0
z2x2dx-x2zdx+x3dz=0
x2(z2-z)dx+x3dz=0 / : x2
(z2-z)dx+xdz=0
z(z-1)dx+xdz=0/ : x(z2-z), z≠0, z≠1
Cy=
Cy=x(y-x), y=0
11) (2x+3y-5)dx-(x+4y)dy=0
2x+3y-5=0 -8y+3y-5=0
x=-4y -5y=5 x=x1+4 , y=
x=4 y=-1
(2×1+8-3y1-3-5)dx1-(x1+4-4y1-4)dy1
(2×1-3y1) -(x1-4y1)dy1/dx1
y1=zx1 y1’=z’x1+z
(2×1+3zx1)=( x1+4zx1)( z’x1+z)
x1(2+3z)= x1 (1+4z)( z’x1+z)
(2+3z)= z’x1+z +4z’zx1+4z2
z’(x1+4zx1)+4z2+z-2-3z=0
x1z’(1+4z)+4z2-2z-2=0
x1z’(1+4z)+(4z2-2z-2)=0
x1(1+4z)dz+(4z2-2z-2)dx1=0 /:(4z2-2z-2)x1
2az+a+bz-b=4z+1
2az+bz=4z
a-b=1
2a+b=4 => 2+2b+b=4
a-b=1 => a=1+b
3b=2 a=
b=
16) (2 — 9xy2)x dx + (4y2 — 6×3)y dy = 0
M N
=-18=-18
+
30)x’=x+y, x(0)=0
y’=4y-2x, y(0)=-1
=0
D=1+4*6=25
x(0)=+=0
x(t)=-=
y(0)=-4+=-1
(-1-)
7)
*
x=0
Бернулли теңдеуі
* ; t
dz=dt
z=
y==
y=
+
+
X=