Учебные материалы по математике | Правило саррюса | Matematiku5
Вузы по математике Готовые работы по математике Как писать работы по математике Примеры решения задач по математике Решить задачу по математике online

Правило саррюса


где

где определители – называются вспомогательными и получаются из определителя путем замены его первого, второго или третьего столбца столбцом свободных членов системы.

Пример 2. Решить систему .

Сформируем главный и вспомогательные определители:

Осталось рассмотреть правила вычисления определителей третьего порядка. Их три: правило дописывания столбцов, правило Саррюса, правило разложения.

а) Правило дописывания первых двух столбцов к основному определителю:

.

Вычисление проводятся следующим образом: со своим знаком идут произведения элементов главной диагонали и по параллелям к ней, с обратным знаком берут произведения элементов побочной диагонали и по параллелям к ней.

б) Правило Саррюса:

Со своим знаком берут произведения элементов главной диагонали и по параллелям к ней, причем недостающий третий элемент берут из противоположного угла. С обратным знаком берут произведения элементов побочной диагонали и по параллелям к ней, третий элемент берут из противоположного угла.

в) Правило разложения по элементам строки или столбца:

Определитель равен сумме произведений элементов какой-нибудь строки (столбца) на их соответствующие алгебраические дополнения.

Если , тогда .

Алгебраическое дополнение – это определитель более низкого порядка, получаемый путем вычеркивания соответствующей строки и столбца и учитывающий знак , где – номер строки, – номер столбца.

Например,

, , и т. д.

Вычислим по этому правилу вспомогательные определители и , раскрывая их по элементам первой строки.

Вычислив все определители, по правилу Крамера найдем переменные:

Проверка:

Вывод: система решена верно: .

1.3.  Основные свойства определителей

Необходимо помнить, что определитель – это число, найденное по некоторым правилам. Его вычисление может быть упрощено, если пользоваться основными свойствами, справедливыми для определителей любого порядка.

Свойство 1. Значение определителя не изменится от замены всех его строк соответствующими по номеру столбцами и наоборот.

Операция замены строк столбцами называется транспонированием. Из этого свойства вытекает, что всякое утверждение, справедливое для строк определителя, будет справедливым и для его столбцов.

Свойство 2. Если в определителе поменять местами две строки (столбца), то знак определителя поменяется на противоположный.

Свойство 3. Если все элементы какой-нибудь строки определителя равны 0, то определитель равен 0.

Свойство 4. Если элементы строки определителя умножить (разделить) на какое-нибудь число , то и значение определителя увеличится (уменьшится) в раз.

Если элементы какой-нибудь строки, имеют общий множитель, то его можно вынести за знак определителя.

Свойство 5. Если определитель имеет две одинаковые или пропорциональные строки, то такой определитель равен 0.

Свойство 6. Если элементы какой-нибудь строки определителя представляют собой сумму двух слагаемых, то определитель равен сумме двух определителей.

Наташа

Автор

Наташа — контент-маркетолог и блогер, но все это не мешает ей оставаться адекватным человеком. Верит во все цвета радуги и не верит в теорию всемирного заговора. Увлекается «нефрохиромантией» и тайно мечтает воссоздать дома Александрийскую библиотеку.

Распродажа дипломных

 Скидка 30% по промокоду Diplom2020

А ты боишься COVID-19?

 Пройди опрос и получи промокод