Учебные материалы по математике | Тригонометрическая форма записи комплексного числа | Matematiku5
Вузы по математике Готовые работы по математике Как писать работы по математике Примеры решения задач по математике Решить задачу по математике online

Тригонометрическая форма записи комплексного числа


Плоскость, точки которой являются изображением комплексных чисел, называется комплексной плоскостью, ее обозначают символами (Z) или (W).

Легко видеть, что действительные числа а = (а,0) изображаются точками оси иксов (oX), поэтому ось абсцисс называется действительной осью.

Мнимые числа с = (a,b) = a+i·b (b ≠ 0) изображаются точками, не лежащими на оси абсцисс. Чисто мнимые числа c = (0,b) = b·i (b ≠ 0) изображаются точками оси ординат, поэтому эту ось в комплексной плоскости называют мнимой осью.

Начало координат (0,0) является изображением комплексного числа 0, поэтому оно называется нулем. Отметим, что комплексные числа Z=x+i·y=(x,y) также изображаются векторами плоскости с проекциями x и y. Начало вектора может быть помещено в любую точку.

Изобразим комплексное число Z = (x,y) = x+i·y вектором, начало которого помещено в нуль.

Длина этого вектора очевидно равна и называется модулем комплексного числа Z и обозначается .

Угол, который составляет этот вектор с положительным направлением действительной оси, называется аргументом комплексного числа Z и обозначается ArgZ. Этот угол определяется неоднозначно, а с точностью до слагаемых кратных . Отметим, что направление отсчета углов против часовой стрелки принимают за положительное, а по часовой стрелке за отрицательное.

Среди бесконечного множества значений ArgZ есть одно такое, которое содержится в полуинтервале , оно называется главным значением аргумента числа Z и обозначается символом argZ.

Очевидно ArgZ = argZ+2πk (к = 0, 1, 2,…). Легко доказывается, что для комплексных чисел Z = x+y·i

argZ =

5. Тригонометрическая форма записи комплексного числа

Из чертежа непосредственно видно , . Отсюда следует, что (1) – тригонометрическая форма записи комплексного числа.

Геометрическое истолкование суммы, разности, произведения и частного двух комплексных чисел

Пусть нам даны два комплексных числа с1 = а1 + b1·i и с2 = а2 + b2·i. Составим их сумму с = с1 + с2 = (а1 + а2) + i·(b1 + b2). Изобразим с1 и с2 векторами с началом в нуле. Построим на них параллелограмм.

Очевидно сумма с=с1+с2 изображается вектором диагонали параллелограмма, построенного на векторах с1 и с2 с началами в нуле. Т. е. сумму можно находить по правилу сложения векторов.

Из чертежа непосредственно следует, что (2) – это неравенство распространяется на любое число слагаемых.

Рассмотрим теперь разность с = с1-с2, где с1 = а1+b1·i и с2 = а2+b2·i. Очевидно с = (а1-а2)+i·(b1b2) или с = с1+(-с2).

Нетрудно видеть, что вектор (-с2) получается из вектора с2 изменением направления на противоположное. Вектор с = с1-с2 получается в результате сложения вектора с1 и (-с2). Таким образом число с = с1-с2 изображается вектором, соединяющим точки с1 и с2, причем начало его помещено в точке с2, а конец в точке с1. Модуль разности с1-с2 есть расстояние между точками с1 и с2.

Из чертежа непосредственно видно, что , можно показать, что ;

Равенство имеет место только в том случае, когда эти векторы коллинеарные.

Возьмем два произвольных комплексных числа: , и составим их произведение с = с1·с2 = |с1|·|c2[osArg с1 · сosArg с2 — sinArg с1 · sinArg с2)+i·(sinArg с1 · сosArg с2 + сosArg с1 · sinArg с2)] = |с1|·|c2[cos(Arg с1 + Arg с2) + i·sin(Arg с1 + Arg с2)]. Следовательно |c| = |с1|·|c2| =|с1·c2|, Arg c = Arg(с1·с2) = Arg с1+Arg с2 (сумма аргументов – алгебраическая сумма). Отметим, что Arg c2 = Arg c + Arg c и не равно Arg c. Но можно Arg c2 = 2·arg c + 2кπ. Таким образом комплексное число с = с1·с2 изображается вектором, который получается из вектора с1 путем его растяжения в |c2| раз и путем поворота полученного вектора на угол Arg с2.

Легко устанавливается, что модуль произведения любого конечного числа чисел равен произведению их модулей и аргумент произведения равен сумме аргументов сомножителей Arc(c1·…·cn)=Argс1+…+Argcn. В частности есть с1 = с2 = … = сn, то , Arg сn=Arg c+…+Arg с = n·arg с+2кπ (k = 0, 1, 2, …). Таким образом

cn = |c|n·(сos nArg с+ i·sin nArg с), n ≥ 2 (3)

Полученная формула называется формулой Муавра. Часто формулой Муавра называют другую формулу (cosφ+i·sinφ)n = cos + i·sin (4)

Наташа

Автор

Наташа — контент-маркетолог и блогер, но все это не мешает ей оставаться адекватным человеком. Верит во все цвета радуги и не верит в теорию всемирного заговора. Увлекается «нефрохиромантией» и тайно мечтает воссоздать дома Александрийскую библиотеку.

Распродажа дипломных

 Скидка 30% по промокоду Diplom2020